MNIST with TensorFlowJS

License under Apache License, Version 2.0 by Coursera.

The HTML

<html>
<head>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis"></script>

</head>
<body>
    <h1>Handwriting Classifier!</h1>
    <canvas id="canvas" width="280" height="280" style="position:absolute;top:100;left:100;border:8px solid;"></canvas>
    <img id="canvasimg" style="position:absolute;top:10%;left:52%;width=280;height=280;display:none;">
    <input type="button" value="classify" id="sb" size="48" style="position:absolute;top:400;left:100;">
    <input type="button" value="clear" id="cb" size="23" style="position:absolute;top:400;left:180;">
    <script src="data.js" type="module"></script>
    <script src="script.js" type="module"></script>
</body>
</html>

data.js

/**
 * @license
 * Copyright 2018 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =
 */

const IMAGE_SIZE = 784;
const NUM_CLASSES = 10;
const NUM_DATASET_ELEMENTS = 65000;

const TRAIN_TEST_RATIO = 5 / 6;

const NUM_TRAIN_ELEMENTS = Math.floor(TRAIN_TEST_RATIO * NUM_DATASET_ELEMENTS);
const NUM_TEST_ELEMENTS = NUM_DATASET_ELEMENTS - NUM_TRAIN_ELEMENTS;

const MNIST_IMAGES_SPRITE_PATH =
    'https://storage.googleapis.com/learnjs-data/model-builder/mnist_images.png';
const MNIST_LABELS_PATH =
    'https://storage.googleapis.com/learnjs-data/model-builder/mnist_labels_uint8';

/**
 * A class that fetches the sprited MNIST dataset and returns shuffled batches.
 *
 * NOTE: This will get much easier. For now, we do data fetching and
 * manipulation manually.
 */
export class MnistData {
  constructor() {
    this.shuffledTrainIndex = 0;
    this.shuffledTestIndex = 0;
  }

  async load() {
    // Make a request for the MNIST sprited image.
    const img = new Image();
    const canvas = document.createElement('canvas');
    const ctx = canvas.getContext('2d');
    const imgRequest = new Promise((resolve, reject) => {
      img.crossOrigin = '';
      img.onload = () => {
        img.width = img.naturalWidth;
        img.height = img.naturalHeight;

        const datasetBytesBuffer =
            new ArrayBuffer(NUM_DATASET_ELEMENTS * IMAGE_SIZE * 4);

        const chunkSize = 5000;
        canvas.width = img.width;
        canvas.height = chunkSize;

        for (let i = 0; i < NUM_DATASET_ELEMENTS / chunkSize; i++) {
          const datasetBytesView = new Float32Array(
              datasetBytesBuffer, i * IMAGE_SIZE * chunkSize * 4,
              IMAGE_SIZE * chunkSize);
          ctx.drawImage(
              img, 0, i * chunkSize, img.width, chunkSize, 0, 0, img.width,
              chunkSize);

          const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);

          for (let j = 0; j < imageData.data.length / 4; j++) {
            // All channels hold an equal value since the image is grayscale, so
            // just read the red channel.
            datasetBytesView[j] = imageData.data[j * 4] / 255;
          }
        }
        this.datasetImages = new Float32Array(datasetBytesBuffer);

        resolve();
      };
      img.src = MNIST_IMAGES_SPRITE_PATH;
    });

    const labelsRequest = fetch(MNIST_LABELS_PATH);
    const [imgResponse, labelsResponse] =
        await Promise.all([imgRequest, labelsRequest]);

    this.datasetLabels = new Uint8Array(await labelsResponse.arrayBuffer());

    // Create shuffled indices into the train/test set for when we select a
    // random dataset element for training / validation.
    this.trainIndices = tf.util.createShuffledIndices(NUM_TRAIN_ELEMENTS);
    this.testIndices = tf.util.createShuffledIndices(NUM_TEST_ELEMENTS);

    // Slice the the images and labels into train and test sets.
    this.trainImages =
        this.datasetImages.slice(0, IMAGE_SIZE * NUM_TRAIN_ELEMENTS);
    this.testImages = this.datasetImages.slice(IMAGE_SIZE * NUM_TRAIN_ELEMENTS);
    this.trainLabels =
        this.datasetLabels.slice(0, NUM_CLASSES * NUM_TRAIN_ELEMENTS);
    this.testLabels =
        this.datasetLabels.slice(NUM_CLASSES * NUM_TRAIN_ELEMENTS);
  }

  nextTrainBatch(batchSize) {
    return this.nextBatch(
        batchSize, [this.trainImages, this.trainLabels], () => {
          this.shuffledTrainIndex =
              (this.shuffledTrainIndex + 1) % this.trainIndices.length;
          return this.trainIndices[this.shuffledTrainIndex];
        });
  }

  nextTestBatch(batchSize) {
    return this.nextBatch(batchSize, [this.testImages, this.testLabels], () => {
      this.shuffledTestIndex =
          (this.shuffledTestIndex + 1) % this.testIndices.length;
      return this.testIndices[this.shuffledTestIndex];
    });
  }

  nextBatch(batchSize, data, index) {
    const batchImagesArray = new Float32Array(batchSize * IMAGE_SIZE);
    const batchLabelsArray = new Uint8Array(batchSize * NUM_CLASSES);

    for (let i = 0; i < batchSize; i++) {
      const idx = index();

      const image =
          data[0].slice(idx * IMAGE_SIZE, idx * IMAGE_SIZE + IMAGE_SIZE);
      batchImagesArray.set(image, i * IMAGE_SIZE);

      const label =
          data[1].slice(idx * NUM_CLASSES, idx * NUM_CLASSES + NUM_CLASSES);
      batchLabelsArray.set(label, i * NUM_CLASSES);
    }

    const xs = tf.tensor2d(batchImagesArray, [batchSize, IMAGE_SIZE]);
    const labels = tf.tensor2d(batchLabelsArray, [batchSize, NUM_CLASSES]);

    return {xs, labels};
  }
}

script.js

import {MnistData} from './data.js';
var canvas, ctx, saveButton, clearButton;
var pos = {x:0, y:0};
var rawImage;
var model;
	
function getModel() {
	model = tf.sequential();

	model.add(tf.layers.conv2d({inputShape: [28, 28, 1], kernelSize: 3, filters: 8, activation: 'relu'}));
	model.add(tf.layers.maxPooling2d({poolSize: [2, 2]}));
	model.add(tf.layers.conv2d({filters: 16, kernelSize: 3, activation: 'relu'}));
	model.add(tf.layers.maxPooling2d({poolSize: [2, 2]}));
	model.add(tf.layers.flatten());
	model.add(tf.layers.dense({units: 128, activation: 'relu'}));
	model.add(tf.layers.dense({units: 10, activation: 'softmax'}));

	model.compile({optimizer: tf.train.adam(), loss: 'categoricalCrossentropy', metrics: ['accuracy']});

	return model;
}

async function train(model, data) {
	const metrics = ['loss', 'val_loss', 'accuracy', 'val_accuracy'];
	const container = { name: 'Model Training', styles: { height: '640px' } };
	const fitCallbacks = tfvis.show.fitCallbacks(container, metrics);
  
	const BATCH_SIZE = 512;
	const TRAIN_DATA_SIZE = 5500;
	const TEST_DATA_SIZE = 1000;

	const [trainXs, trainYs] = tf.tidy(() => {
		const d = data.nextTrainBatch(TRAIN_DATA_SIZE);
		return [
			d.xs.reshape([TRAIN_DATA_SIZE, 28, 28, 1]),
			d.labels
		];
	});

	const [testXs, testYs] = tf.tidy(() => {
		const d = data.nextTestBatch(TEST_DATA_SIZE);
		return [
			d.xs.reshape([TEST_DATA_SIZE, 28, 28, 1]),
			d.labels
		];
	});

	return model.fit(trainXs, trainYs, {
		batchSize: BATCH_SIZE,
		validationData: [testXs, testYs],
		epochs: 20,
		shuffle: true,
		callbacks: fitCallbacks
	});
}

function setPosition(e){
	pos.x = e.clientX-100;
	pos.y = e.clientY-100;
}
    
function draw(e) {
	if(e.buttons!=1) return;
	ctx.beginPath();
	ctx.lineWidth = 24;
	ctx.lineCap = 'round';
	ctx.strokeStyle = 'white';
	ctx.moveTo(pos.x, pos.y);
	setPosition(e);
	ctx.lineTo(pos.x, pos.y);
	ctx.stroke();
	rawImage.src = canvas.toDataURL('image/png');
}
    
function erase() {
	ctx.fillStyle = "black";
	ctx.fillRect(0,0,280,280);
}
    
function save() {
	var raw = tf.browser.fromPixels(rawImage,1);
	var resized = tf.image.resizeBilinear(raw, [28,28]);
	var tensor = resized.expandDims(0);
    var prediction = model.predict(tensor);
    var pIndex = tf.argMax(prediction, 1).dataSync();
    
	alert(pIndex);
}
    
function init() {
	canvas = document.getElementById('canvas');
	rawImage = document.getElementById('canvasimg');
	ctx = canvas.getContext("2d");
	ctx.fillStyle = "black";
	ctx.fillRect(0,0,280,280);
	canvas.addEventListener("mousemove", draw);
	canvas.addEventListener("mousedown", setPosition);
	canvas.addEventListener("mouseenter", setPosition);
	saveButton = document.getElementById('sb');
	saveButton.addEventListener("click", save);
	clearButton = document.getElementById('cb');
	clearButton.addEventListener("click", erase);
}


async function run() {  
	const data = new MnistData();
	await data.load();
	const model = getModel();
	tfvis.show.modelSummary({name: 'Model Architecture'}, model);
	await train(model, data);
	init();
	alert("Training is done, try classifying your handwriting!");
}

document.addEventListener('DOMContentLoaded', run);



A quick test, The 6 are often classified as 9. The 9 without closing the circle will be classified as 7. The 1 in different area of the square will be classified as different numbers.